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Quantum perturbation theory for the level splitting in billiards

G. Hackenbroich, E. Narimanov, and A. D. Stone
Department of Applied Physics, Yale University, New Haven, Connecticut 06520

~Received 30 May 1997!

A perturbation theory is developed for the level splitting due to dynamical tunneling in two-dimensional
billiards. Using a scattering-matrix approach, the splittings are expressed in terms of a matrix element con-
necting quasimodes localized in the subspace of positive and negative angular momentum, in analogy to the
familiar degenerate double-well problem. The theory is shown to work well for billiards which are integrable,
mixed, and strongly chaotic.@S1063-651X~98!51101-4#

PACS number~s!: 05.45.1b, 03.65.Sq, 72.15.Rn
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The eigenvalue spectra of quantum systems frequently
hibit doublets of quasidegenerate levels due to tunneling
tween classically noncommunicating regions of phase sp
Of particular interest is the case when the regions are
separated by a potential energy barrier but by dynamical
riers due to local conservation laws in the classical moti
The ‘‘dynamical tunneling’’@1# through such dynamical bar
riers has been the subject of a number of recent theore
studies@2–7#. In contrast to the familiar potential tunneling
dynamical tunneling was found to be extremely sensitive
details of the classical motion. In particular, a dramatic
hancement of the level splittings was observed due to
presence of chaotic motion in classically inaccessible reg
of phase space. Moreover, these regions induced strong
tuations of the level splittings under variation of some ext
nal parameter. No simple scheme has been developed
calculating these splittings for a general problem, althou
detailed results have been obtained in the case of the an
billiard @6#.

In this work we present an alternative approach for cal
lating the level splittings for a large class of two-dimension
billiards. The method describes not only the case of conv
tional dynamical tunneling, but also the case where qu
doublets arise from quantum dynamical localization of sta
@8#. Our method is based on theS-matrix formulation@9,10#
to the quantization of billiards. We introduce a decompo
tion S5S01V, where S0 defines an unperturbed proble
with exact degeneracy between symmetry-related qu
modes localized in angular momentum. The tunnel splittin
of the quasimodes are then calculated using perturba
theory. Using this method we find that dynamical tunneli
in billiards can be formulated in close formal corresponde
with the familiar double-well problem. A motivation for thi
work was recent studies indicating that both chaos-assi
tunneling and dynamical localization play a role in determ
ing the linewidth of optical resonators of deformed circu
shape@11,12#.

We demonstrate the method by calculating the tunne
splittings for three classes of two-dimensional billiards: T
elliptic billiard, the annular billiard@4,6#, and ‘‘rough’’ bil-
liards @8#. In both the elliptic billiard and the annular billiar
quasidoublets are supported by regions of regular motio
phase space. However, while the elliptic billiard is int
grable, the annular billiard is mixed, giving rise to a stro
enhancement of tunneling~‘‘chaos-assisted’’ tunneling!
571063-651X/98/57~1!/5~4!/$15.00
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@4,6#. In contrast, the rough billiards studied here are alm
completely chaotic and quasidoublets only occur due
quantum localization. For all three billiards we show that o
results agree well with the exact splittings calculated num
cally and that the method can obtain correct parameter
pendences and statistical behavior.

In was first shown in Refs.@9,10# that the bound state
spectrum of a billiard can be determined exactly from know
edge of the scattering matrix for waves incident on the b
liard from outside~‘‘inside-outside duality’’!. Here, we re-
call briefly the derivation@10# of the S matrix for billiards
created by convex deformations of a circular boundary. S
billiards include the elliptic and rough billiards to be treat
below. The boundary is parametrized in terms of the dista
R(f) between the origin and a point on the boundary in
f direction. The wave function inside the billiard is ex
panded in term of cylindrical Hankel functions

c~r ,f!5 (
n52`

`

i n@anHn
~2!~kr !1bnHn

~1!~kr !#einf. ~1!

The regularity of the wave functions atr 50 requires
a5b. The boundary conditionc„R(f),f…50 results
in the second relationb5ST(k)a. Here the matrixS(k)
is given by S(k)52h(2)(k)@h(1)(k)#21, where the
matrices elements of h(1,2)(k) are defined by
hmn

(1,2)5(1/2p)*0
2pdfHm

(1,2)
„kR(f)…exp@i(m2n)f#. Both

conditions together imply det@12S(k)#50 at an eigenstate o
the billiard, so that the zeros of the eigenphases ofS deter-
mine the spectrum. Degenerate eigenphases will lead to
generate levels, and small eigenphase splittings can be
lated to level splittings@6#.

It can be shown thatS as defined hereis the S matrix for
the scattering of angular momentum states impinging fr
outside the billiard@10#, henceS is unitary. Further con-
straints onS are imposed by discrete symmetries of the b
liard. The time-reversal symmetryc5c* requires
Sm,n5S2n,2m . Parity invariance for a billiard with the re
flection symmetry R(f)5R(2f) yields Sm,n5S2m,2n .
Time reversal and parity invariance together imply thatS is
symmetric.

A greyscale plot ofuSm,nu for a typical rough billiard of
the type defined in Ref.@8# is shown in Fig. 1. We
used R(f)5R01DR(f) with DR(f)/R05(m52

M (gm /
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m)cos(mf) wheregm are real random coefficients. We cho
M55 andk50.045, where the average roughnessk is de-
fined by k25^(dR/df)2/R0

2&f . Angular momenta
m,n.kR0 , correspond semiclassically to states with imp
parameters larger than the billiard radius, hence they o
couple evanescently andS becomes almost diagonal fo
m,n.kR0 . Figure 1 reveals that scattering transitions b
tween large positive and large negative angular momenta
strongly suppressed.

The perturbation theory is based on the observation th
is these transitions which are responsible for the tunnel s
tings. That is, we can decompose theS matrix into two parts

S5S01V, ~2!

where S0 maintains the sign of angular momentum up
scattering andS0 has doubly degenerate eigenphases. In
angular momentum basis,S0 andV are defined by the block
decomposition

S5Fs11 s12

s21 s22G , S05Fs11 0

0 s22G ,
V5F 0 s12

s21 0 G . ~3!

By definition, only the perturbationV changes the sign of th
angular momentum.

First we confirm thatS has doubly degenerate eige
phases if V is neglected. From time-reversal symmet
s115O(s22)TO, i.e., s11 and (s22)T are connected by a
similarity transformation by the orthogonal matr
Om,n5dm,2n . Since similar matrices have the same sp
trum, and transposition preserves that spectrum, the mat
s11, (s22)T, and s22 have degenerate eigenphases.
analogous argument holds for billiards with only reflecti
symmetry.

The doublets ofS0 will be split due to the perturbationV.
We emphasize thatin general V is not a small operator. In
fact, as shown in Fig. 1, the matrix elementsVm,n with small

FIG. 1. Greyscale plot ofuSm,nu for a rough billiard withM55,
kR0580, andk50.045. The dashed lines indicate the block di
sion of S used in the perturbation theory. The inset shows
modulus ofSm,30.
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umu, unu are comparable in magnitude to the matrix eleme
of S0 . Therefore,V will be strongly mixing and the pertur
bation theory will fail badly for eigenvectors centered
small angular momentum. As expected, such eigenvector
not give rise to quasidoublets. On the other hand, the ma
elements ofV between eigenvectors ofS0 localized around
large umu are quite small, indicating that the splittings o
these vectors may be calculated perturbatively inV. It is
crucial thatS0 does not describe the undeformed~circular!
billiard ~for which S andS0 is diagonal!, but takes into ac-
count most of the angular momentum mixing that occurs d
to deformation. Only the small residual mixing that giv
rise to splitting is neglected.

To find the leading order splittings of the eigenphases
S we apply degenerate perturbation theory. SinceS0 is not
symmetric in the general case, we must distinguish betw
its left and right eigenvectors. LetuR1& be a right eigenvec-
tor of S0 such thatuR1& has nonzero components for positiv
angular momentum only. Due to time-reversal invarian
^L2u5^R1uO is a left eigenvector with the same unpe
turbed eigenvalue but with nonvanishing components
negative angular momenta only. Degenerate with this p
and defined in a similar way are eigenvectorsuR2&, ^L1u.
The eigenvalue shifts due to the perturbation are the root
the 232 determinant

S ^L1uVuR1& ^L1uVuR2&

^L2uVuR1& ^L2uVuR2&
D . ~4!

By definition ^L1uVuR1&5^L2uVuR2&50. Using time-
reversal invariance this yields

du52u^L1uVOuL1&^R1uOVuR1&u1/2 ~5!

for the splitting of the eigenphases ofS. For a billiard with
time reversal and reflection symmetry,uR1&5(^L1u)T and
the result simplifies to

du52u^R1uVOuR1&u. ~6!

While Eqs.~5! and ~6! give the splitting to first order in the
perturbationV, higher-order corrections can be calculat
applying the standard Rayleigh-Schro¨dinger perturbation
theory. We found that the higher-order corrections can g
erally be neglected for the applications of our formalism
be presented below.

~i! Elliptic billiard : We have studied the level splitting
for elliptic billiards with fixed areapR0

2 and eccentricitye.
To each quasidoublet we assign numbers (r ,m), wherer is
the radial quantum number and6m the angular quantum
numbers of that doublet in the circular limit. To connect t
eigenphase splitting with the splitting ink, we used the re-
lationdkr ,m'u]u r ,m

(0) /]kr ,mu21du r ,m , whereu r ,m
(0) is the eigen-

phase for the circle and we usekr ,m'kr ,m
(0) as in Ref.@6#.

For the ellipse, the eigenvectors needed for evaluating
~6! are known explicitly@10#. In the angular momentum rep
resentation, their components are given by coefficients de
ing solutions of Mathieu’s equation. Utilizing this mappin
we obtained@13# the eigenvector components by a simp
recursion relation. This yields analytical results in the regi
of small deformations, (ekR0)2!1, with Rm62p

1 ;(ekR0)2p

e
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for an eigenvector peaked at angular momentumm. We
computed the perturbationV for small eccentricity by ex-
pandingS in powers ofe2. This showedVp,2q;e2(p1q) for
p,q.0. Substituting these results into Eq.~6! one finds that
the splittings should increase withe as the power law
dkr ,m;e2m. Such a power-law dependence is expected
the integrable elliptical billiard@14#; however, note that one
finds @13# exactly the same power-law splitting for the no
integrable quadrupole billiard@11#, although with a substan
tially larger prefactor.

In Fig. 2 we present a numerical test of our results for
state (r ,m)5(0,12). Shown is a double-logarithmic plot o
dkr ,mR0 as a function ofe. The results clearly confirm the
power law behavior with the exponent predicted by pert
bation theory. Figure 2~inset! shows that the level splitting
dkr ,mR0 for fixed r 50, e50.1 decrease exponentially wit
m.

~ii ! Annular billiard: The annular billiard was propose
and numerically investigated by Bohigaset al. @4# as a model
system for chaos-assisted tunneling. This billiard has a
cular boundary and a nonconcentric circular inclusion. Cl
sically, angular momentum is exactly conserved and the
tion is regular for all orbits that only scatter at the bounda
while orbits that hit the inner circle typically perform chaot
motion. Based on anS-matrix approach, Doron and Frisch
@6# obtained analytical expressions for the tunnel splittings
a function of theS-matrix elements. These expressions we
interpreted as arising from preferred tunneling paths in
gular momentum space. Our goal in studying this billia
was to see if the same terms were selected by our sim
first-order perturbation theory inV.

The S matrix of the annular billiard is not symmetric bu
has the reflection symmetrySm,n5S2m,2n @6#. For the per-
turbation theory, this impliesuR2&5OuR1&, uL2&5OuL1&.
Using the determinant~4!, this yieldsdu52u^L1uVuR2&u.
We use the block-matrix model, which was introduced
Ref. @6#, and argued to be statistically equivalent to the tr
S matrix of the problem. In the model theS matrix consists

FIG. 2. Double-logarithmic plot of the level splitting as a fun
tion of the eccentricitye for the state (r ,m)5(0,12), calculated
numerically~squares! and using the perturbation theory@solid line,
dashed line in the regime (ekR0)2!1#. There is no numerical data
for splittings less 10218 due to the finite precision of our diagona
ization routine. Errors for the eigenphase splitting itself are ty
cally less than a few percent fore,0.3. Inset: log10@dkR0# for the
states (0,m) as a function ofm for fixed eccentricitye50.1.
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of regular blocks corresponding to angular momentam far
away from a chaotic region, edge blocks on the border, an
chaotic block. Within this block model the right eigenvecto
of S peaked at angular momentum2m are given by@6#
R2m

2 '1, R2 l
2 'S2 l ,2m /dm,l , and Rg

2'( l@Sg,2 lS2 l ,2m#/
@dm,ldm,g#1Sg,2m /dm,g , respectively. Here,2m labels a
component in the regular block, indices2 l , l .0 are used
for the edge block andg for the chaotic block; and
dm,l5Sm,m2Sl ,l anddm,g5Sm,m2Sg,g . The components of
^L1u are given by similar equations asuR2& but with
S2 l ,2m , Sg,2m , andSg,2 l replaced bySm,l , Sm,g , andSl ,g ,
respectively. Writing the eigenphase doublets in the fo
exp@ium6(1/2)dum# and expanding indum , one obtains the
eigenphase splitting as a sum over paths in index sp
Among the various contributions is the term

dum
~recer!52 ImS e2 ium (

g,l ,l 8

Sm,lSl ,gSg,2 l 8S2 l 8,2m

dm,gdm,ldm,l 8
D ~7!

due to paths that lead from regular (r ) statesm to 2m
through the edge (e) and chaotic (c) blocks. This is exactly
the contribution due to the chaos-assisted paths that
found in Refs.@6#. Using the perturbation theory, we als
find other paths of first order inV @e.g., paths of the type
(recr)# that require further study.

~iii ! Rough billiards:A Poincarésurface of section for a
typical rough billiard with M55 and average roughnes
k50.045 is shown in Fig. 3~a!. It is characterized by smal
islands of regular motion together with a large chaotic reg
extending through most of phase space. This billiard is f
damentally different from the two studied above. There is
dynamical barrier to prevent classical transitions betwe
positive and negative angular momenta. Therefore there i
semiclassical basis for the existence of quasidoublets. H
quasidoublets arise from the dynamical localization of
quantum wave functions@8#.

-

FIG. 3. ~a! Classical phase space of the rough billiard, sa
parameters as in Fig. 1.x is the angle of incidence with respect t
the normal for trajectories scattering at the boundary.~b! Eigen-
phase splittings forkR0580 obtained numerically~squares! and
using the perturbation theory~solid circles!. ~c! Mean eigenphase
splittings averaged as described in the text.~d! Inverse tunneling
length (2l splitt)

21 ~squares! and inverse localization length
l 2150.25(kkR0)22 ~solid line! plotted vsk.
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We calculated theS matrix of a rough billiard for
kR0580 and solved numerically for its eigenphases a
eigenvectors. We compared the exact splittings with the p
diction of perturbation theory calculated using the nume
cally determined eigenvectors. For each quasidoublet
eigenvectors were found to be peaked around some ang
momentum^6m& @15#. Figure 3~b! displays strong fluctua
tions of the splittings vs^m&. By varying parameters
(kR0 ,k) we checked that these fluctuations result fro
avoided crossings as in previous@4–6# studies of chaos-
assisted tunneling. The perturbation theory reproduces
fluctuations fairly well confirming that they derive from th
structure of the unperturbed eigenvectors. To extract a
tematic dependence on̂m&, we first averaged log10@du#
over 50 values obtained by varyingkR0 in the interval
@79,81#. Then, the average splittings were grouped into b
of D^m&54, and mean values were obtained within each b
Figure 3~c! shows that̂ log10@du#& decreases approximate
linearly with ^m&, ^ ln@du#&'lnA2^m&/lsplitt , where A is a
constant. It turns out that the inverse slopel splitt is related to
the localization lengthl . In fact, assuming that the eigenve
tor components decay exponentially away from the pe
V

d
e-
-
e
lar

he

s-

s
.

k,

am;exp(2um2^m&u/l) for m.0, our perturbation theory pre
dicts @13# l splitt5 l /2. We checked this relation by calculatin
l splitt for various values ofk and by comparing with the pre
diction @8# l'4(kkR0)2 for rough billiards. Good agreemen
is found @Fig. 3~d!# with no fitting parameters.

In summary, we have reduced the problem of finding tu
nel splittings in billiards to that of evaluating the eigenve
tors ofS0 . In many cases it may be possible to either eva
ate these eigenvectors approximately or model th
statistical properties and hence obtain information about
splittings. The method is not semiclassical and works e
when there is no classical dynamical barrier giving rise
doublets.
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