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Quantum perturbation theory for the level splitting in billiards
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A perturbation theory is developed for the level splitting due to dynamical tunneling in two-dimensional
billiards. Using a scattering-matrix approach, the splittings are expressed in terms of a matrix element con-
necting quasimodes localized in the subspace of positive and negative angular momentum, in analogy to the
familiar degenerate double-well problem. The theory is shown to work well for billiards which are integrable,
mixed, and strongly chaoti¢S1063-651X%98)51101-4

PACS numbegps): 05.45+b, 03.65.Sq, 72.15.Rn

The eigenvalue spectra of quantum systems frequently ex4,6]. In contrast, the rough billiards studied here are almost
hibit doublets of quasidegenerate levels due to tunneling besompletely chaotic and quasidoublets only occur due to
tween classically noncommunicating regions of phase spacguantum localization. For all three billiards we show that our
Of particular interest is the case when the regions are ndesults agree well with the exact splittings calculated numeri-
separated by a potential energy barrier but by dynamical bagally and that the method can obtain correct parameter de-
riers due to local conservation laws in the classical motionpendences and statistical behavior.

The “dynamical tunneling’1] through such dynamical bar-  In was first shown in Refs[9,10] that the bound state
riers has been the subject of a number of recent theoreticgPpectrum of a billiard can be determined exactly from knowl-
studies|2—7]. In contrast to the familiar potential tunneling, €dge of the scattering matrix for waves incident on the bil-
dynamical tunneling was found to be extremely sensitive tdiard from outside("inside-outside duality’). Here, we re-
details of the classical motion. In particular, a dramatic encall briefly the derivatior{10] of the S matrix for billiards
hancement of the level splittings was observed due to thereated by convex deformations of a circular boundary. Such
presence of chaotic motion in classically inaccessible regionBilliards include the elliptic and rough billiards to be treated
of phase space. Moreover, these regions induced strong flueelow. The boundary is parametrized in terms of the distance
tuations of the level splittings under variation of some exter-R(¢) between the origin and a point on the boundary in the
nal parameter. No simple scheme has been developed fgr direction. The wave function inside the billiard is ex-
calculating these splittings for a general problem, althougtpanded in term of cylindrical Hankel functions

detailed results have been obtained in the case of the annular
billiard [6]. _ " " _

In this work we present an alternative approach for calcu- ~ ¥(r, @)= 2_ i"[anHy (kr)+ BaHL (kr)]eM?. (1)
lating the level splittings for a large class of two-dimensional "
billiards. The method describes not only the case of conven- . . .
tional dynamical tunneling, but also the case where quasi- he regularity of the wave .functlons at=0 requires
doublets arise from quantum dynamical localization of state§*— B. The boundgry co?d|t|on¢//(R(¢>),¢)=O _results
[8]. Our method is based on tlf&matrix formulation[9,10] In thg second reIatlorﬁ=(§)(k) a.(lg-lereitlhe matrixs(lo)
to the quantization of billiards. We introduce a decomposiiS 9given by S(k)=—h ((‘f)zgh (k)] where the
tion S=S,+V, whereS, defines an unperturbed problem Matices elements —of h*>%(k) are defined by

_ (12)_ 27 (1,2) _
with exact degeneracy between symmetry-related quasfmn = (1/2m)[5"dgHpy“(kR(¢))exdi(m—-n)4].  Both
modes localized in angular momentum. The tunnel splittinggonditions together imply det—SKk)]=0 at an eigenstate of
of the quasimodes are then calculated using perturbatiothe billiard, so that the zeros of the eigenphase$ dkter-
theory. Using this method we find that dynamical tunnelingMine the spectrum. Degenerate eigenphases will lead to de-
in billiards can be formulated in close formal correspondencélenerate levels, and small eigenphase splittings can be re-
with the familiar double-well problem. A motivation for this lated to level splitting$6].
work was recent studies indicating that both chaos-assisted It can be shown thab as defined heres the S matrix for
tunneling and dynamical localization play a role in determin-the scattering of angular momentum states impinging from
ing the linewidth of optical resonators of deformed circularoutside the billiard[10], henceS is unitary. Further con-
shape[11,17. straints onS are imposed by discrete symmetries of the bil-

We demonstrate the method by calculating the tunnelindiard. The time-reversal symmetryy=y¢*  requires
splittings for three classes of two-dimensional billiards: TheSm n=S-n,-m- Parity invariance for a billiard with the re-
elliptic billiard, the annular billiard4,6], and “rough” bil-  flection symmetry R(¢)=R(—¢) yields Sy ,=S_m —n-
liards[8]. In both the elliptic billiard and the annular billiard Time reversal and parity invariance together imply t8as
quasidoublets are supported by regions of regular motion isymmetric.
phase space. However, while the elliptic billiard is inte- A greyscale plot of S, | for a typical rough billiard of
grable, the annular billiard is mixed, giving rise to a strongthe type defined in Ref[8] is shown in Fig. 1. We
enhancement of tunnelind*chaos-assisted” tunneling used R(¢)=Ry+AR(¢) with AR(¢)/RO=Emzz(ym/

[
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|m|, |n| are comparable in magnitude to the matrix elements
of Sy. Therefore,V will be strongly mixing and the pertur-
bation theory will fail badly for eigenvectors centered at
small angular momentum. As expected, such eigenvectors do
not give rise to quasidoublets. On the other hand, the matrix
elements ofV between eigenvectors &, localized around
large |m| are quite small, indicating that the splittings of
these vectors may be calculated perturbativelyinlt is
crucial thatS, does not describe the undeformedrcularn
billiard (for which S and S is diagona), but takes into ac-
count most of the angular momentum mixing that occurs due
to deformation. Only the small residual mixing that gives
rise to splitting is neglected.

To find the leading order splittings of the eigenphases of
m S we apply degenerate perturbation theory. SiBgas not
symmetric in the general case, we must distinguish between

FIG. 1. Greyscale plot dfS,,, for a rough billiard withm =5, its left and right eigenvectors. LéR™) be a right eigenvec-
kRo=80, andx=0.045. The dashed lines indicate the block divi- tOr Of Sy such thatR™) has nonzero components for positive
sion of S used in the perturbation theory. The inset shows theangular momentum only. Due to time-reversal invariance,
modulus ofS, 50 (L7|=(R*|O is a left eigenvector with the same unper-

turbed eigenvalue but with nonvanishing components for
m)cosme) wherey,, are real random coefficients. We chose negative angular momenta only. Degenerate with this pair
M=5 andx=0.045, where the average roughnesis de- and defined in a similar way are eigenvect{i®s ), (L"|.
fined by «?=((d R/d¢)2/R§>(/,. Angular momenta The eigenvalue shifts due to the perturbation are the roots of
m,n>kRy, correspond semiclassically to states with impacfthe 2X2 determinant
parameters larger than the billiard radius, hence they only " " n _
couple evanescently an8 becomes almost diagonal for (LYIVIRT) (LTIVIRT)

m,n>kR,. Figure 1 reveals that scattering transitions be- (L7IVIR") (LT|VIRT)/" @
tween large positive and large negative angular momenta are
strongly suppressed. By definition (L*|V|R*)=(L"|V|R")=0. Using time-
The perturbation theory is based on the observation that ieversal invariance this yields
is these transitions which are responsible for the tunnel split-
tings. That is, we can decompose SBenatrix into two parts 50=2|(L*[VOIL™)(RT|OV|R")|*? 5
S=5+V, (2)  for the splitting of the eigenphases 8f For a billiard with

time reversal and reflection symmetf®*)=((L*|)T and
where S, maintains the sign of angular momentum uponthe result simplifies to
scattering ands, has doubly degenerate eigenphases. In the
angular momentum basiSy andV are defined by the block 56=2|(R"|VO|R")|. (6)
decomposition

While Eqgs.(5) and (6) give the splitting to first order in the

S S st 0 perturbationV, higher-order corrections can be calculated
S= st s So= 0 s | applying the standard Rayleigh-ScHinger perturbation
theory. We found that the higher-order corrections can gen-
0 s~ erally be neglected for the applications of our formalism to
V= «* 0 (3)  be presented below.

(i) Elliptic billiard: We have studied the level splittings

angular momentum. To each quasidoublet we assign numbersn), wherer is

First we confirm thatS has doubly degenerate eigen- the radial quantum number andm the angular quantum
phases ifV is neglected. From time-reversal symmetry ngmbers of tha@ qloublej in the C|_rc-ular limit. To connect the
st*=0(s" )70, i.e.,,s"* and (6~ )T are connected by a eigenphase splitting with the splitting in we used the re-
similarity transformation by the orthogonal matrix lation 8k, m=~[30{ ok, | ~156; . whered(%), is the eigen-
Omn=6m —n- Since similar matrices have the same specphase for the circle and we uke,~ kﬁ% as in Ref[6].
trum, and transposition preserves that spectrum, the matrices For the ellipse, the eigenvectors needed for evaluating Eq.
s, (s77)T, ands™~ have degenerate eigenphases. An(6) are known explicitly{10]. In the angular momentum rep-
analogous argument holds for billiards with only reflectionresentation, their components are given by coefficients defin-
symmetry. ing solutions of Mathieu’s equation. Utilizing this mapping

The doublets o, will be split due to the perturbatiod.  we obtained[13] the eigenvector components by a simple
We emphasize thdh general Vis not a small operator. In recursion relation. This yields analytical results in the regime
fact, as shown in Fig. 1, the matrix elemeltg , with small  of small deformations, gk Ry)?< 1, with R;i2p~(ekR})2F’
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FIG. 2. Double-logarithmic plot of the level splitting as a func- K <m>
tion of the eccentricitye for the state {,m)=(0,12), calculated _ .
numerically(squaresand using the perturbation thedisolid line, FIG. 3. (a) Classical phase space of the rough billiard, same

dashed line in the regimeekR,)2<1]. There is no numerical data Parameters as in Fig. }.is the angle of incidence with respect to
for splittings less 108 due to the finite precision of our diagonal- the normal for trajectories scattering at the boundéby.Eigen-
ization routine. Errors for the eigenphase splitting itself are typi-Phase splittings fokR,=80 obtained numericallysquares and
cally less than a few percent fexc0.3. Inset: logq 5kR,] for the ~ Using the perturbation theorgolid circles. (c) Mean eigenphase
states (On) as a function ofn for fixed eccentricitye=0.1. splittings averaged as described in the teg}. Inverse tunneling
length  (Agpii) ~ ! (squares and inverse localization length

. I~1=0.25(kkRy) ~2 (solid line) plotted vs«.
for an eigenvector peaked at angular momentorn We

computed the perturbatiov for small eccentricity by ex-

panding$S in powers ofe?. This showedV,, _q~e*®* for away from a chaotic region, edge blocks on the border, and a
p,q>0. Substituting these results into E(@) one finds that  chaotic block. Within this block model the right eigenvectors

the splittings should increase wite as the power law f 5 peaked at angular momentumm are given by[6]
8k, m~€>™. Such a power-law dependence is expected folr- w=1, RO=S_| _pn/dm, and R;~3[S, S | _ml/

the mtegrable elliptical billiard14]; however, note that one
finds[13] exactly the same power-law splitting for the non-
integrable quadrupole billiardl1], although with a substan-
tially larger prefactor.

In Fig. 2 we present a numerical test of our results for th
state ¢,m)=(0,12). Shown is a double-logarithmic plot of
ok, mRo as a function ofe. The results clearly confirm the
power law behavior with the exponent predicted by pertur
bation theory. Figure Zinse) shows that the level splittings
ok, mRo for fixed r=0, e=0.1 decrease exponentially with

of regular blocks corresponding to angular momemtdar

[d m|dm 7]+Sy m/dmy, respect|vely Here,—m labels a

component in the regular block, indicesl, |>0 are used

for the edge block andy for the chaotic block; and
=Snm— S, anddy, ,= Sy m— . The components of

e<|_+| are given by similar equatlons dR~) but with

S -m: S, _m,andS, _ replaced byg,,,, Sy, ,, ands ,,

respectively Writing the eigenphase doublets in the form

‘exfdif,*=(1/2)56,,] and expanding in%d,,, one obtains the

eigenphase splitting as a sum over paths in index space.

Among the various contributions is the term

m.

(i) Annular billiard: The annular billiard was proposed S.1S .S, /S|
and numerically investigated by Bohigesal.[4] as a model 56\ =2 |m| e~ 1m > A YZy V2 mm) gy
system for chaos-assisted tunneling. This billiard has a cir- y I i,y dm,dm,17

cular boundary and a nonconcentric circular inclusion. Clas-
sically, angular momentum is exactly conserved and the modue to paths that lead from regular) (statesm to —m
tion is regular for all orbits that only scatter at the boundary,through the edged) and chaotic €) blocks. This is exactly
while orbits that hit the inner circle typically perform chaotic the contribution due to the chaos-assisted paths that was
motion. Based on aB-matrix approach, Doron and Frischat found in Refs.[6]. Using the perturbation theory, we also
[6] obtained analytical expressions for the tunnel splittings agind other paths of first order iv [e.g., paths of the type
a function of theS-matrix elements. These expressions wereg(recr)] that require further study.
interpreted as arising from preferred tunneling paths in an- (iii) Rough billiards:A Poincaresurface of section for a
gular momentum space. Our goal in studying this billiardtypical rough billiard withM=5 and average roughness
was to see if the same terms were selected by our simple=0.045 is shown in Fig. @). It is characterized by small
first-order perturbation theory M. islands of regular motion together with a large chaotic region
The S matrix of the annular billiard is not symmetric but extending through most of phase space. This billiard is fun-
has the reflection symmet§;,, ,=S_, _, [6]. For the per- damentally different from the two studied above. There is no
turbation theory, this impliefR™)=0O|R™), |[L")=0O|L*).  dynamical barrier to prevent classical transitions between
Using the determinant4), this yields 66=2|(L*|V|R™)|.  positive and negative angular momenta. Therefore there is no
We use the block-matrix model, which was introduced insemiclassical basis for the existence of quasidoublets. Here
Ref.[6], and argued to be statistically equivalent to the truequasidoublets arise from the dynamical localization of the
S matrix of the problem. In the model tH& matrix consists quantum wave functionf8].
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We calculated theS matrix of a rough billiard for a_ ~exp(—|m—(m)//1) for m>0, our perturbation theory pre-
kRo=80 and solved numerically for its eigenphases andjicts[13] Iy,=1/2. We checked this relation by calculating
eigenvectors. We compared the exact splittings with the Prerii for various values ok and by comparing with the pre-
diction of perturbation theory calculated using the numeri-giction[8] | ~4(xkRy)? for rough billiards. Good agreement
cally determined eigenvectors. For each quasidoublet thg found[Fig. 3(d)] with no fitting parameters.
eigenvectors were founq to be pea_ked around some angular |, summary, we have reduced the problem of finding tun-
momentuny=m) [15]. Figure 3b) displays strong fluctua- | sjittings in billiards to that of evaluating the eigenvec-

tlsns of the ?]phtﬂngs hVS<”;]>- Byﬂ varying param?tefrs tors of S,. In many cases it may be possible to either evalu-
(kRy,x) we checked that these fluctuations result fomee  hose eigenvectors approximately or model their

avoided crossings as in previofié—6] studies of chaos-  gaiictical properties and hence obtain information about the

assisteq tunngling. The pgrtqrbation theory r_eproduces th§3plittings. The method is not semiclassical and works even
fluctuations fairly well conflrm|r_lg that they derive from the when there is no classical dynamical barrier giving rise to
structure of the unperturbed eigenvectors. To extract a SYYjoublets

tematic dependence ofm), we first averaged lag 66]

over 50 values obtained by varyingR, in the interval We thank S. Frischat and E. Doron for helpful conversa-

[79,81. Then, the average splittings were grouped into bingions and for communicating unpublished material and J. U.
of A(m)=4, and mean values were obtained within each binNockel for computer programs that generated Poincare sur-
Figure 3c) shows thaflog; 66]) decreases approximately faces of section. G.H. thanks the INT at the University of

linearly with (m), (In[66])~InA—(m)/ls,;x, where A is a  Washington for its hospitality and the D.O.E. for partial sup-

constant. It turns out that the inverse sldpg; is related to  port during the completion of this work. We acknowledge

the localization length. In fact, assuming that the eigenvec- the support of NSF Grant No. PHY-9612200. G.H. was
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